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THE STRUCTURE OF ENERGY CONSERVING LOW-ORDER MODELS
IN GEOPHYSICAL FLUID DYNAMICS

Alexander Gluhovsky and Christopher Tong
Purdue University, West Lafayette, Indiana, USA

Following pioneering work by Lorenz and Obukhov, low-order models (LOMs) remain an important
tool in geophysical fluid dynamics. LOMs are commonly derived by applying the Galerkin method to the
version of the Navier-Stokes equations appropriate for the problem at hand. Unfortunately, along with a
number of highly attractive features, the method per se does not provide criteria for selecting modes, nor a
guarantee that a model based on a particular set of modes will behave anything like the original system. As
a consequence, LOMs employed in problems of geophysical fluid dynamics often lack fundamental
conservation properties of the original equation, which may result in undesirable behaviors in such models.
This accounts for the interest in general principles for constructing effective models.

Obukhov (1969) insisted that a LOM should retain three characteristic features of the original system:
quadratic nonlinearity; and in the absence of forcing and dissipation, conservation of energy and of phase
space volume. Still, the class of models satisfying these requirements (Obukhov called them hydrodynamic
type systems (HTSs)) is too broad. We introduce a significant subclass that consists of coupled 3-mode
nonlinear systems

Vi = pV,Vi+bvy—cv,,

Vy = gV;V,+Cv,—av,, €

Vy =rvivo+av,—-bv; p+qg+r=0.
known in mechanics as Volterra gyrostats. The reason behind this is that coupled gyrostats are HTSs and
they arise as energy conserving LOMs in many important problems of geophysical fluid dynamics and
turbulence (Gluhovsky and Agee 1997). Earlier, Obukhov (1973) suggested systems of coupled Euler
gyroscopes (Egs. (1) without linear terms) for this purpose. However, such linear terms arise in LOMs due

to various factors peculiar to geophysical fluid dynamics (stratification, rotation, and topography). Unlike
ordinary viscous terms, linear (gyrostatic) terms in Egs. (1) do not affect the conservation of energy

va /2or phase volume » 8V, /év, =0.

The equations for a gyrostat that has only two nonlinear terms and one pair of gyrostatic terms,

Vi =—qV,V;,
V,=qv,v, —av,, @
Vy = av,,

with linear friction and a constant external force added, become the equations of the celebrated Lorenz
(1963) model of convection (Gluhovsky 1982),

x=0(y-x), y=-xz+rx-y, z=xy-bz.
System (2) has two independent quadratic invariants, the energy and the squared angular momentum, or

their combination / = V§ /2+(alg)v, and the energy E = (v,2 + vé +V3)/2. It is interesting to see

the relation of these integrals to fundamental quantities in a convective flow (kinetic energy K, potential
energy U and available potential energy A) where K+U (total mechanical energy) and K+A are conserved.
We show that / and E are proportional to K+U and K+U+4( K+A), respectively, where 4 is a constant.

Another advantage of using coupled gyrostats as the basic structure for LOMs is that the failure for
a LOM to be equivalent to a system of coupled gyrostats usually indicates a violation of fundamental
conservation properties. One example is provided by the important Howard — Krishnamurti (1986) model
that has also received particular attention in studies of Rayleigh-Bénard convection. Howard and
Krishnamurti noticed that the model possessed trajectories going to infinity that they rightly attributed to
deficiencies of the truncation. Indeed, Thiffeault and Horton (1996) found that the model lacks energy
conservation in the dissipationless limit, which can be remedied by adding one term in the Galerkin
expansion of the stream function. This operation adds terms to the original model which gives it a coupled
gyrostat form
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vy = 4V, +P3V)V; ~YiVi»
vy = qs3V3V, —Y2V2,
V3= —a,Ve | TIVV; BREAET
Veo=| qVsvi—aV, —VeVy —YaVs 3)
Vs =[=qV1V, —Ysvs+ 1,
= q,V,Vy +a,V; TVaVel  —YeVeo
v, = —4q32V;Vs —Y7V9 +2f,

and thereby ensures energy conservation and boundedness of trajectories. The integrals of system (3)
1=(v12 +v§ + v%)/2 +(a,/q,)vs —(a,/q,)v, and E:Zvi2 /2  have exactly the same

interpretations as the integrals / and E in the Lorenz model above.

The Charney and DeVore (1979) model of a barotropic atmosphere over topography also results in
a LOM in the form of coupled gyrostats. Below are the equations for the second approximation for this

problem,

BUARAS
qv;Vy

—gVsVs

VeV

—avy +cv,

—avg+cCv,

—-cv,

av,

—CVs

avs

+Pvgvge

+ VeV,

+Rv,v;

- Pv,v,

- Ovgv,

- Rv,v,

_Ylvly

—Ya2Va,

—Y3v3+f7
—YaVsr
—7sVs

~Y6Vs

while the first approxnmatlon is simply the single gyrostat in the upper left corner. Linear gyrostatlc terms
with coefficients @ and @ are caused by topography, while those with coefficients ¢ and C are caused
by rotation. Thus, an increase in the order of approximation results in adding certain new gyrostats to the
model while introducing further physical effects results in the appearance of additional gyrostatic terms in
the model. This situation is typical for LOMs in geophysical fluid dynamics and suggests a modular
approach to the construction of LOMs.

The following cascade system of coupled gyrostats (a version of one introduced by Gluhovsky
(1989)) can be used in studies of turbulence:

Vi = | pivav; MV, +f,
Vy = q@iVavy =@V | +P2Vsv, —AaVy,
Vi = | nViVy +@Vy | +42VeVy -3V, —A3Vs3,
v, = VoV +a,Vyl+e =4V,
......................................................................................................................................... 4)
v,,_g = + Pn-2Vn-1Va _;\'"—ZV"“Z’
Vg = AT Gn-2VaVpa —AyaV, -kn—lvn—l'l
V,, = Tae2Vn-aVa1 ¥ @pyVao ;\.,,Vn
In the absence of forcing and dissipation ( f =0, A,=0), system (4) conserves energy and phase

volume. Upon making certain natural assumptions about the coefficients (in line with the Kolmogorov
hypothesis about the self-similarity of a cascade), p..,/p; =d, a.,/a; =4 /k =d?,

l+l

behavior of the system is determined by three dimensionless parameters: R =| p, lf/}.'l (an analog of

the Reynolds number), c:al/,/l Dl f=(

gyrostatic terms), and 8 =g, /r;

a, /kl)/ﬁ (taking into account the relative influence of
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At small R, the system has a stable stationary solution (“laminar flow") that evolves with R
S increasing from a form with a single nonzero component (v, =f/kl, v; =0, i>1) to those with more

than one nonzero component. Further increase in R brings the system into a chaotic (“turbulent”) regime
(Fig. 1). System (4) may be viewed as a severe truncation of the Navier-Stokes equations where only one

mode Vv;(¢) represents all Fourier modes in the octave shell with inner radius 1/ \/?l— k; and outer radius

-\/—(;k,, and wave numbers k; are logarithmically spaced k; = diko (a so-called shell model). Then time
-~ Jak, . L 2 gain

averages V; = ZL/ﬁk E(k)dk are the energies contained in such shells and v; o d corresponds

to the Kolmogorov — Obukhov law E(k) o« k> Fig. 2 demonstrates that system (4) in turbulent regimes

possesses an inertial subrange (that broadens as R is increasing) in which its spectral behavior follows the
Kolmogorov — Obukhov law.

logu

~— Fig. 1 Chaotic regime in system (4)at ¢=0.2, Fig. 2 Energy distributions in system (25) at
8=4.0, R =35000. Projection of the trajectory 6=0.2,6=4.0 R=35000 (solid curve) and
ontheplane (u,u-5). R=17000 (dashed curve); dash-dotted line

corresponds to the Kolmogorov-Obukhov law.

We agree with Brown and Chua (1992) that “there is a pressing need for new nonlinear techniques
that employ a building block approach whereby simple well-understood components are used to construct
models of complex dynamical systems”. We believe that coupled gyrostats could play the role of above
building blocks in problems of geophysical fluid dynamics, including turbulence. They possess fundamental
conservation properties of the original equations and all their trajectories are bounded. An increase in the
order of approximation and/or adding new mechanisms result in adding new gyrostats to the system or
gyrostatic terms to existing gyrostats Relationships are also established between integrals of motion in the
fluid and those in gyrostats. Failure for a LOM to have a gyrostatic structure indicates that proper energy
integrals are not conserved. Thus, coupled gyrostatic structure ensures that LOMSs retain some significant
physics of the original Navier-Stokes equations.
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