
Computing Science  
And Statistics 

 
Volume 34 

 
 
 
 
 

Geoscience and  
Remote Sensing 

 
Edward J. Wegman 

Amy Braverman 
Editors 

 
 

Proceedings of the  
34th Symposium on the Interface 

Montréal, Québec, Canada, April 17-20, 2002 
 
 
 
 

INTERFACE 
FOUNDATION  
OF NORTH AMERICA 



1 

Novelty Detection in Mass Spectral Data using 
a Support Vector Machine Method 

 
 

Christopher Tong1,2 and Vladimir Svetnik2 
 

1Dept. of Statistics, Purdue University 
West Lafayette, IN  47907-1399 

2Biometrics Research Department 
Merck Research Laboratories 

RY84-16, P. O. Box 2000 
Rahway, NJ  07065 

ctong@mailaps.org, vladimir_svetnik@merck.com 
 
 
 

Abstract 
 

Outlying samples are sought in a very high-dimensional data set, a library of 
mass spectra.  Such samples are considered novel from the chemical structure 
point of view and are identified for further investigation of their potential 
biological activity.  The support vector machine algorithm for domain 
description (Tax & Duin 1999; Schölkopf et al. 2000, 2001) is used to generate 
a list of potential outliers.  The results are compared to those found by a 
sequential clustering procedure (Svetnik and Liaw, 2001).  The results are quite 
reasonable. 

 
 
 
1.  INTRODUCTION 
 
The multivariate novelty detection (outlier identification) problem is a standard one in 
classical statistics (e.g., Barnett and Lewis 1993) as well as in data mining (e.g., Bruenig 
et al. 2000; Guha et al. 2000; Ramaswamy et al. 2000).  A recent contribution to the 
toolbox of nonparametric novelty detection methods is the support vector domain 
description (Tax & Duin 1999; Schölkopf et al. 2000, 2001).  This approach is based on 
the Support Vector Machine algorithm that has stimulated recent interest in kernel-based 
learning methods (e.g., Vapnik 2000; Cristianini & Shawe-Taylor 2000).  In this paper, 
the support vector machine approach is applied to a mass spectral data library.  The 
results are compared to corresponding earlier results on the same data set, using the 
sequential clustering procedure for novelty detection (Svetnik & Liaw 2001). 
 
The present work is motivated by a specific novelty detection problem originating from a 
drug discovery activity (An et al. 2001; Svetnik & Liaw 2001).  Natural products, such as 
fungi and other microorganisms, are a rich source of potential drugs.  Many fungi are 
difficult, if not impossible, to grow under lab conditions.  An et al. (2001) described a 
technique in which the genome of a slow-growing fungus is randomly cut into about 
1000 pieces, each of which is inserted into the genome of an easy-to-grow “host” fungus.  
This results in about 1000 transgenic fungi that are as easy to grow as the original host 
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fungi, but possibly possessing some novel characteristics of the donor fungus.  In order to 
identify transgenic fungi with novel characteristics, their extracts are subjected to mass 
spectrometry.  Mass spectrometry is an analytical chemistry technique that reveals 
important information about the molecular structure of a compound (see, e.g., De 
Hoffman and Stroobant 2001).  Each extract has one mass spectrum consisting of 
intensity (abundance) measurements at 800 channels (mass-to-charge ratios).  Many of 
these measurements have a maximum intensity across all samples that does not exceed a 
detection threshold, and thus the number of “informative” channels can be reduced by as 
much as 40%.  In the data set examined here, measurements at only 468 channels each 
are used (although this still qualifies as a very high-dimensional data set).  There are 764 
samples in the library, and since all their mass spectra cannot be visually inspected by a 
scientist, an automated screening procedure for identifying the “novel” samples (those 
with spectra most unlike the bulk of the spectra) is required.  Usually mass spectral data 
are not normally distributed, which suggests that nonparametric multivariate methods 
could be quite useful for data analysis.  Several such procedures have been tried on this 
library, and here results for the support vector machine approach are reported. 
 
In the next section, a brief review of the support vector machine algorithm for novelty 
detection is presented.  In Section 3, the method is applied to the data set just described, 
and the results are discussed.  In the concluding Section 4, these results are compared 
with those of Svetnik & Liaw (2001) using the sequential clustering procedure. 
 
 
2.  SUPPORT VECTOR MACHINE ALGORITHM FOR NOVELTY 
DETECTION 
 
One basic approach to novelty (outlier) detection is based on estimating the support of the 
data, the domain in which most of the data lives.  Samples that fall outside the estimated 
support are declared to be outliers.  Therefore, the problem is considered to be one of 
“single class classification”:  either a data point belongs to the data domain, or it is an 
outlier.  Since the data are unlabeled, this is an example of unsupervised learning. 
 
Several support vector machine (SVM) approaches have been proposed to solve this 
problem (Tax & Duin 1999; Schölkopf et al. 2000, 2001; Campbell & Bennett 2001).  
For Gaussian kernels, the methods of Tax & Duin and Schölkopf et al. are essentially 
equivalent.  The Tax & Duin approach is the simplest to describe:  one could begin by 
drawing a sphere around the majority of the data, allowing a small fraction of the data to 
fall outside.  In other words, find the minimum radius sphere (or hypersphere) enclosing 
the majority of points, while including a penalty in the objective function for outliers.  
Since a sphere is unlikely to be the most natural geometric object to describe the data 
domain, one can instead nonlinearly map the data into a higher dimensional feature 
space, fit the spherical domain estimate in the feature space, and then map the domain 
estimate back into the input space, where it becomes a non-spherical “blob” or set of 
disjoint “blobs”.  The mapping and inverse mapping process can be bypassed using the 
standard kernel trick:  since the algorithm for fitting the spherical domain estimate can be 
formulated in a way such that the data points only appear via inner products with each 
other, the kernel function that specifies how to compute these inner products is the only 
aspect of the feature space that is required.   A commonly used kernel function is a 
Gaussian Radial Basis Function (RBF) kernel, 
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where 2σ  is a free parameter that may be varied to produce different estimates of the 
data domain.  The Gaussian kernel satisfies Mercer’s condition, which guarantees that for 

every value of 2σ , K(x, y) corresponds to the inner product of x and y after they are 
nonlinearly mapped into some Hilbert space that need not be identified explicitly.  The 
Gaussian kernel is a particularly convenient one to use in the novelty detection problem 
(Tax and Duin 1999; Schölkopf et al. 2000, 2001). 
 
The resulting domain estimate boundary is determined by a subset of the original data 
points, those that are on the boundary of the domain estimate, as well as the outliers 
themselves.  Together these samples are called support vectors.  Hence the representation 
of the domain estimate requires storing only a subset of the training data (unlike, say, 
nearest neighbor methods which require storing the entire data set).  The computational 
solution for the estimate is fast and simple, since the optimization problem is a quadratic 
program with a convex feasible space, allowing only a single global minimum.  Local 
minima, which plague tree-based and neural methods, are thus avoided. 
 
Computationally, the formulation by Schölkopf et al. (2000, 2001) is simpler.  Without 
going into details, one ends up with the following optimization problem: 
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where d is the dimensionality of the data and ν is a free parameter to be discussed shortly.  

The iα ’s are Lagrange multipliers, one each associated with every data point.  The task 

of the optimization procedure is to solve for these coefficients.  Most of them are 
expected to be zero, and only those corresponding to support vectors will be nonzero.  
Once these Lagrange multipliers are determined, the decision function is written as 
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where the sum is over the subset SV of data that are support vectors.  (The threshold ρ is 
computed from the training data in a specified way; see Schölkopf et al. 2000.)  The 
domain estimate is defined as the region where the above decision function takes a 
positive value.  Classification of an individual data point x is done by evaluating the sign 
of the decision function h at that x.  Outliers are those who have negative values of h(x); 
they also have Lagrange multipliers attaining the upper bound 1/νd.  It has been 
suggested that the values of h(x) for outliers can be used as a measure of degree of 
outlyingness (Schölkopf et al. 2000, 2001).  Finally, it should be noted that the Schölkopf 
et al. (2000, 2001) formulation is based on a “maximal margin” idea that is inspired by 
the results of statistical learning theory (Vapnik, 2000). 
 
In this work, we focus exclusively on the Gaussian kernel.  There are then two free 
parameters in the SVM algorithm.   The first, which we keep fixed, is a parameter ν 
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which serves simultaneously as an upper bound on the proportion of outliers and a lower 
bound on the proportion of support vectors (Schölkopf et al. 2000, 2001).  It takes values 

in the range between 1/n and 1, where n is the number of samples.  The second, 2σ , 
controls the sparseness of the data domain estimate.  Generally, the larger its value, the 
more sparse is the domain estimate and the fewer support vectors are used.  However, the 

behavior of, say, the number of support vectors as 2σ  varies is not guaranteed to be 
strictly monotonic. 
 
The above has only been a brief overview of the SVM outlier detection methods.  Please 
refer to the original papers (Tax & Duin 1999; Schölkopf et al. 2000, 2001; Campbell & 
Bennett 2001) for a more thorough discussion of the SVM outlier detection algorithms, as 
well as other applications thereof. 
 
 
3.  APPLICATION TO MASS SPECTRAL DATA LIBRARY 
 
The mass spectral data library referred to in the introduction has been analyzed using the 
SVM Matlab package of Ma & Ahalt (2000), which in turn uses SVM MEX library files 
from LIBSVM written by Chang and Lin (2000).  This package implements the outlier 
detection algorithm in addition to the usual SVM classification algorithm.  Recall that 
there are 764 samples, each with 468 channels (dimensions).  We fixed ν to be 0.10 and 

varied 22/1 σ=Γ  over a range of values which produced consistent results (for 
extreme values of Γ, the proportion of outliers identified is not close to the pre-assigned 
value of ν).  Also, in addition to applying the algorithm on the original data, we 
duplicated the procedure on normalized data.  (In the latter, each sample is standardized 
with respect to its own mean and standard error.)   
 
Once the SVM was trained, the original data can be classified as an outlier or not based 
on either the corresponding sign of the decision function h or based on the value of the 
corresponding Lagrange multiplier for that sample.  Numerically, it was found that 
classifying based on the Lagrange multiplier was more reliable.  This is because non-
outlier support vectors have an h-value very close to zero and numerical error can result 
in small negative values for them.   
 
On the non-normalized data, an outlier list was produced for five different values of Γ 
(each list had about 76 entries, consistent with the pre-assigned value of ν) and the results 
were pooled together to form a grand list of 88 outliers.  Only one non-outlier support 
vector was identified in each run.  The procedure was repeated for the normalized data, 
resulting in a grand list of 79 outliers, and no more than four non-outlier support vectors 
were identified in each run.  The fact that so few non-outlier support vectors are used 
indicates that the outliers maintain a strong influence on the boundary of the domain 
estimate.  In addition, the fact that the pooled outlier lists were not much larger than the 
size of an individual list of 76 indicates that the results were fairly stable within the range 
of Γ used. 
 
The two lists of outliers can themselves be compared:  together, they identify a total of 
120 distinct samples as outliers.  Of these, 39% were commonly identified by both lists, 
34% were identified as outliers by only the non-normalized SVM list, and 27% were 
identified as outliers by only the normalized SVM list. 
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To illustrate the performance characteristics of the SVM algorithm, we focus now on a 
particular run of the SVM on non-normalized data, at the specific parameter value 

13101 −×=Γ .  After the SVM is trained, the decision function h is evaluated for each 
training sample.  The resulting h-values can be sorted in ascending order, and a plot of 
these values is given in Fig. 1.  As can be seen in the plot, the first 77 or so samples have 
a negative h-value and are the outliers.   
 
 
Figure 1:  Decision function values for mass spectra data using SVM with 

13101 −×=Γ  and ν = 0.1, sorted in ascending order. 

 
 
A median spectrum for the entire data set can be formed by taking the median of each 
channel across all samples; the resulting spectrum is therefore thought to represent a 
“typical” sample.  The median spectrum for our data set is shown at the top of Fig. 2, 
along with the spectra of three examples of compounds declared to be outliers by the 
SVM.  One can see that the outlier samples have spectra quite distinct from the median 
spectrum. 
 
 
4.  COMPARISON WITH RESULTS OF SEQUENTIAL CLUSTERING 
PROCEDURE 
 
Because one does not know the “right” answer in unsupervised learning, it is difficult to 
estimate the error rate or confidence level (although these could be approximated using a 
resampling method).  We propose instead to compare the results of the SVM algorithm to 
those of another outlier detection method.  In any case, it is good practice to compare 
results from two competing methods when there is no reason to believe a priori that one 
method is superior to the other.   In this case, we will compare the SVM results to those 
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of Svetnik and Liaw (2000) using a sequential clustering procedure (SCP).  The latter 
method hierarchically clusters the data and identifies “small clusters” that are far away 
from “large clusters” as potential outlier data.  Like SVMs, the SCP method can 
accommodate a wide range of similarity measures that could be chosen by the user, and it 
provides a measure of the degree of outlyingness for a given sample. 
 
When the SCP was applied to the mass spectra library discussed above, three different 
similarity measures were utilized with average linkage clustering:  Euclidean distance, 
Pearson correlation, and rank correlation.  Combining the resulting outlier lists gives a 
grand list of 54 samples.  This list overlaps with the SVM outlier list for non-normalized 
data by 61%.  The SCP list overlaps with the SVM outlier list for normalized data by 
83%.  See Table I for a summary of these results. 
 
 

Table I:  Overlap of SVM outlier lists with SCP outlier list 
 

SVM Distance measure: # in common w/ SCP: % in common w/ SCP: 
Non-normalized data 33/54 61% 
Normalized data 45/54 83% 

 
 
Because two independent, distinct procedures (SVM and SCP) produce lists of outliers 
that significantly overlap, one could informally conclude that the results are quite 
reasonable.  However, validation of these results remains for future work, including, e.g., 
performing a test for differences between the outlying spectra and a random sample of 
non-outlying spectra.  The expert opinion of chemists should also be sought regarding 
whether there are real differences between the two sets of spectra. 
 
One criticism of the present approach is that the ordering of the channels is ignored.  
Since the channels represent not masses, but rather mass-to-charge ratios, the physical 
interpretation of the ordering of the channels is not straightforward.  Nonetheless, other 
outlier detection methods have been proposed to account for the ordering of the variables 
(P. L. Davies, personal communication). 
 
Once validated, the above results will be of tremendous value, since the number of 
potentially novel chemical structures that should be further investigated has been reduced 
by nearly an order of magnitude.  The use of these procedures can therefore be of great 
benefit for drug discovery activities. 
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Figure 2:  Median mass spectrum for entire library (top), plus examples of three outlying 

samples’ mass spectra, found using the SVM with 13101 −×=Γ  and ν = 0.1. 
 

 

 

 

 


