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P4.2 LOW-ORDER MODELS OF A SHEARED CONVECTIVE BOUNDARY LAYER

Alexander Gluhovsky * and Christopher Tong
Purdue University, West Lafayette, Indiana

1. INTRODUCTION

Mesoscale shallow convection (MSC) results from a
complex mix of various processes: convection, vertical
shear of horizontal wind, dynamical, thermal, and
entrainment instabilities, effects of rotation, etc. As
discussed in a review by Atkinson and Zhang (1996),
the roles of these processes in the evolution of MSC
remain unclear, thus “a gap exists in our understanding
of the dynamics of the PBL".

Figure 1. Cold air moving southeastward from the frozen
Baffin Bay region to the south of Greenland and over the
open waters of the North Atlantic (Scorer 1986).

Generally considered as the atmospheric
manifestation of Rayleigh-Bénard convection, MSC
occurs in two distinctive regimes: 2D rolls, or cloud
streets, and 3D cells; the latter regime is called
mesoscale cellular convection (MCC) (Agee 1987;
Atkinson and Zhang 1996). Both are characterized by
convective depths of 1 to 3 km and wide ranges of
aspect ratios (2 to 20 for rolls and 5 to 50 for cells).
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It has generally been thought that the conditions for
formation of rolls in the atmosphere are a moderate
surface heat flux and a strong wind speed.
Observational data during cold air outbreaks over the
west Pacific area showed that under almost the same
temperature and humidity profiles, rolls occurred when
the vertical wind shear was 1 to 10 ms™ km”, while
cells existed when the shear was less than these values
(Miura 1986). In their large-eddy simulation, Sykes and
Henn (1989) also observed the tendency of the imposed
shear to reorganize the convective cells into 2D rolls.
Fig. 1 demonstrates a typical occurrence of rolls that
give way to cells down the flow. However, recent lidar
images obtained by Eloranta et al. (1999) indicate that
there might be a misunderstanding of the role of wind
shear. On the western shoreline of Lake Michigan, they
observed 3D open cells just offshore where the wind
shear should be greatest and 2D structures out over the
lake where it should be less.

In this study, low-order models (LOMs) will be
formulated that may help to clarify the roles and
interplay of convection and shear in the dynamics of
MSC. The LOMs are constructed following a general
approach to the development of physically sound LOMs
in the form of coupled Volterra gyrostats (Gluhovsky and
Agee 1997, Gluhovsky and Tong 1999).

The Volterra (1899) gyrostat (also Wittenburg 1977)

V,=PpV,Vy + bV, —cCV,,
V, =QVgV, + CV, — av,, (1)
Vg =TV, +av, — bv,;
where p, q, r, a b, ¢ are constants, p+q+r=0,
describes precisely certain fluid dynamical situations

(Gluhovsky, 1982; Gluhovsky and Tong, 1999). The
simplest gyrostat in a forced regime,

Vi =-qV,V, —7Vy+f,
Vo= QVgVi—avy =75V (2
Vy = av, —73Va

becomes, after a linear change of variables (Gluhovsky
1982), the Lorenz (1963) model for 2D I=41ayleigh—Bénard
convection.




(a,=a, @s=ay), that consists of two coupled
gyrostats (4) describing dynamics in the (x, z) and
(y,2) planes, respectively. For coefficients in this
system and systems (8) and (9) below, we found their
analytical expressions in terms of the parameters of
Egs. (3).

2.2 The Simplest Model of 3D Convection with
Shear

To allow for the generation of spontaneous shear,
two symmetry breaking modes for each component of
horizontal velocity are added. This extends model (7) to
a system of four coupled gyrostats

In Egs. (8), @, =a,, as=a, & =0, & =0q. The two
additional gyrostats in system (8) are, in fact, Euler
gyroscopes with coefficients  p, g, r computed from
parameters of Egs. (3). Note that system (8) provides
the gyrostatic form for a model of convection in an
electrically conducting fluid (Kennett 1976) and models
of convection of shear flows in tokamak plasmas
(Bazdenkov and Pogutse 1993, Aoyagi et al. 1997,
Takayama et al. 1998). Aoyagi et al. (1997) also discuss
their model in relation to Rayleigh—Bénard convection
with shear. All models considered in these papers can
be converted to the form of Egs. (8), just with different
coefficients in each case.

’i‘* = XX ~ XX =@t 23 A 3D Analog of the improved Howard-
X = XX — X =X, Krishnamurti model of convection with shear
%= X, + PXs X, — Ay Xy,
X, = XX, — Xs —-a,X,, Adding 3 more temperature modes produces the 3D
X, = X, + DX X, | — s e, analog of the Howard - Krishnamurti (1986) model
X = X, X, — X, improved by Thiffeault and Horton (1996), which was
%, = X Xq . discussed in the Introduction. In this new model, two
g = x| - aeXe, more “Lorenz” gyrostats (those with coefficients d) are
% = s - g, added to system .(8), as' Yvell as two degenerate
) gyroscopes (those with coefficients c):

X, =] - XX = X, Xq —a,X, +f,

=] xx-x — CX3 Xy — yXsy,

X, = X, + PXg X, —a,X,,

X, = XX, — X - XXy | —auXa,

Xs = X, + PXgXg - Xy,

X = qX7 X ~ X, 9)

X; = X3 Xg dx,g —a; X,

X = qXgXs — g Xy,

X, = X5 Xg dx,, — Qg X,

X0 = dx,, X, — dx; CXyXg — &y X0

Xy = ax,,Xg — dX, X Xg | — X,

X2 = —adX; X, = dXg X, =X, + 1y

INEgs. (9), @, =a,, a5 =a;, Qg =Qg, O =Qy, Ay =y, -

2.4 Conserved Quantities

For all LOMs developed above, expressions for
kinetic energy K, potential energy U, and available
potential energy A, were obtained. In the absence of
forcing and friction, the total energy K + U, and the

“unavailable potential energy”, U — A, are expected to
be constants. Then K + A is also conserved. It can be
easily checked that the sum of squares of all
variables, which is a linear combination of K + U and
K + A (thus, representing some form of energy), is
conserved for all systems of coupled gyrostats.
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It was also demonstrated that the most successful
LOMs in problems of geophysical fluid dynamics are, in
fact, coupled Volterra gyrostats (Gluhovsky 1986,
Gluhovsky and Agee 1997). In these models, linear
gyrostatic terms (linear terms in Egs. (1)) occur due to
various factors peculiar to geophysical fluid dynamics,
such as stratification, rotation, and topography. When
such models are expanded by increasing the order of
approximation or by adding new physical mechanisms,
they still have the structure of coupled gyrostats.

Coupled gyrostats possess the fundamental
conservation properties of the Navier-Stokes equations,
while failure for a LOM to have a gyrostatic structure
usually indicates that proper energy integrals are not
conserved (Gluhovsky and Tong, 1999). One example is
provided by the important Howard — Krishnamurti (1986)
model that has received particular attention in studies of
Rayleigh-Bénard convection with shear. Howard and
Krishnamurti noticed that the model possessed
trajectories going to infinity that they rightly attributed to
deficiencies of the truncation. Indeed, Thiffeault and
Horton (1996) found that the model lacks energy
conservation in the dissipationless limit, which can be
remedied by adding one term in the Galerkin expansion
of the temperature. This operation was demonstrated to
add terms to the original model permitting to transform it
into a system of coupled gyrostats thereby ensuring
energy conservation and boundedness of trajectories
(Gluhovsky and Tong 1999).

Thus, giving LOMs a gyrostatic structure ensures
that certain significant physics from the original
equations of atmospheric dynamics is retained.

2. LOW-ORDER MODELS FOR 3D RAYLEIGH-
BENARD CONVECTION WITH SHEAR

The third dimension is crucial for understanding
MSC. Therefore, instead of the stream function
formulation (in Boussinesq approximation) generally
employed in the 2D case, the following nondimensional
system based on the equation for the vorticity ¢ =V xvVv

was used:

o¢ .08 .06

55 (- V)VW-=(v- 2 —~ _y—=

ot (¢-VIV—(v-V)g+VvV g+(xay y ax)’

00 >

E=—V'V9+VI+KV g, V-v=0, (3)

All variables in Egs. (3) are dimensionless forms of v
(velocity), ¢ (vorticity), 6 (temperature deviation from
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stable profile), v (kinematic viscosity), and x (thermal
conductivity). Also, t is time and x,y,z are the spatial

coordinates. Stress-free  boundary conditions are
adopted: at the top and bottom of the layer (z=0, 7),

0
v,=0, -0, Zx=0, 6=0,
0z 0z

andat x=y=0, n/a (ais the aspect ratio),

The celebrated Lorenz (1963) model results from
Egs. (3) with 2D constraints, by employing the maximally
truncated Galerkin expansions

6 = X,(t)sin(22) + X,(t)cos(ax) sin(2),
v, = X,(t)sin(ax)cos(2), (4)
v, = —aX,(t)cos(ax) sin(2),

Its gyrostatic equivalent (2) can be further simplified by a
linear change of variables

x, = (alqv,+1-(alq), x, =(alq)v, X;=Va t'=qt,

to take the form

X =] - XX —aX +f,
X =] XX~ X3 — X5 (6)
X, = X, | — a3 X,

where «,=7,/q, f=aFlq +(1-(a/q)*)(y,/q) . Again,
the variables X,(t) in Egs. (4) and x(t) in Egs. (5) are
linearly related (Gluhovsky 1982).

2.1 A 3D Analog of the Lorenz Model

The Galerkin expansions for
corresponding to (4),
6 = X,(t)sin(22) + X,(t)cos(ax)sin(z)
+ X,(t)cos(ay)sin(2),
.= X(t)sin(ax)cos(2), 6)
X,(t)sin(ay)cos(2),

the 3D case

<
|

<
]

Y
v, = —aX,(t)cos(ax)sin(z) - aX,(t)cos(ay)sin(z),

produce a 3D analog of the Lorenz (1 963) model

X, = | - X% — XX —ax +f

X, = X3 X, — X3 —a,X,

X, = X, A 7
X, = XXy — Xg | —QuXq

X = X, | —asXs




3. SUMMARY AND CONCLUSIONS

In this paper, 3D low-order models for convection
with shear were developed in the form of systems of
coupled gyrostats. The advantage of coupled gyrostats
is that such systems possess conservation properties
of the original equations (in the dissipationless limit),
thus permitting sound physical behavior.

As noted by Brown and Chua (1992), “there is a
pressing need for new nonlinear techniques that
employ a building block approach whereby simple well-
understood components are used to construct models
of complex dynamical systems”. We believe that
coupled gyrostats could play the role of the above
building blocks in problems of geophysical fluid
dynamics and turbulence.

The study of the models’ behavior is in progress,
and results may be available at the time of the
conference.
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