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1. Introduction

A common problem in drug discovery and develop-
ment is quantitative structure-activity relationship
(QSAR) modeling [Eki00, Haw01, Liv00, Sto93].
The idea is to use a quantitative description of a
chemical compound’s structure and/or properties to
predict the compound’s biological activity. In other
words, we wish to model the function,

activity = f(structure, properties). (1)

The activity may be a continuous or categorical vari-
able, so that QSAR modeling is considered to consist
of regression and classification problems. The struc-
ture of the compound is often described by a set of
topological descriptors, such as atom pairs [Car85] or
topological torsions [Nil87]. The number of descrip-
tors, p, usually exceeds the number of samples, n,
so that the traditional statistical methods (multiple
linear regression [MLR], linear discriminant analy-
sis [LDA], and k-nearest neighbors [kNN]) cannot
be used reliably without a sophisticated variable se-
lection filter, such as a genetic algorithm. This ap-
proach is indeed taken by some investigators. Other
approaches found in the literature include Deci-
sion Tree (recursive partitioning [RP]), Partial Least
Squares (PLS), artificial neural networks (ANN),
and support vector machines (SVM). Examples of
such studies include [Bak00, Don02, Kau01, Rus99].

Unfortunately, each of these approaches suffers
from limitations. For instance, simple methods like
MLR, LDA, and PLS are not flexible enough, since
they lack interactions and the ability to model multi-
ple mechanisms of action. Other methods like ANN
and SVM are too flexible, requiring intensive train-
ing and parameter tuning. Only the Decision Tree
is relatively free of all these limitations; however, it
suffers from low accuracy. Ensemble learning meth-
ods applied to Trees have recently been introduced

to increase their accuracy [Die02]. Examples include
bagging [Bre96], boosting [Fre97], Random Forest
[Bre01], and Decision Forest [Ton03]; there are nu-
merous others. In this talk we focus on the use of
Random Forest for QSAR modeling.

2. Random Forest

Like bagging, Random Forest is an ensemble of un-
pruned trees. Each tree is trained on a bootstrap
sample of the training data. Random Forest differs
from bagging in that at each node, the algorithm
considers as splitting candidates a random sample
of the variables instead of all the variables. The size
of the variable subset is a fixed value, mtry, with
default value

√
p for classification and p/3 for re-

gression. The idea is to maintain the “strength” of
the trees while reducing their correlation. Breiman
[Bre01] has shown that an upper bound on the
generalization error of Random Forest is given by
r(1 − s2)/s2, where r is a measure of the correla-
tion between the trees, and s is a measure of their
strength (see [Bre01] for the details). Since the un-
pruned trees are low-bias, high variance models, av-
eraging over an ensemble of trees reduces variance
while keeping low bias. This can be demonstrated
explicitly by examining the bias-variance decompo-
sition behavior of Random Forest [Sve03b]. It is also
thought that an ensemble of trees mitigates the semi-
artificiality of the tree structure (hyper-rectangular
partition of the descriptor space) and the greediness
of the tree-growing algorithm, which are arguably
the two drawbacks of the Tree approach.

Random Forest also provides additional features
that increase its utility for QSAR modeling:

1. Built-in error estimation, using out-of-bag pre-
dictions;

2. A measure of variable importance; and

3. A measure of intrinsic proximity between two
compounds.

These features are discussed and analyzed further in
[Bre01, Sve03b].
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3. QSAR models of P-gp transport

P-glycoprotein (P-gp) is a drug transport protein
that lives on the cell membrane, protecting the cell
from xenobiotics [Sto02]. A publicly available data
set of P-gp transport activities for 186 drug com-
pounds is provided by Penzotti et al. of Deltagen
[Pen02]. The response variable is a classification of
the drug as a substrate or a non-substrate of P-gp.
We generated a set of 1522 binary atom pair descrip-
tors for these compounds and performed two differ-
ent performance assessment procedures. The first
was to imitate the original authors’ assessment pro-
cedure for their own QSAR model. Their model was
based on sophisticated 3D pharmacophores [Pen02];
we will call it the Deltagen model. They randomly
split the data into a training set and test set, and
reported the accuracy rate on the test set (TS). We
developed QSAR models based on Random Forest
(RF), single tree (RP), and PLS for comparison, and
computed their accuracies on the same training/test
split of the data. We also calculated median accu-
racy rates of the latter three models based on 50
replications of 5-fold cross-validation (CV). The ac-
curacy results are shown in the following table.

Assessment RF RP PLS Deltagen
Procedure

TS 0.70 0.70 0.68 0.63
CV 0.806 0.712 0.769 N/A

Using the single test set (TS) assessment proce-
dure, we see that all three of the methods we tried
perform equivalently, and they outperform the Delt-
agen model. However, in cross-validation (CV), it is
seen that the Random Forest outperforms the single
tree (RP) and does just as well as PLS.

We examined five other QSAR data sets, including
regression examples, and showed that Random For-
est is consistently among the top performers in terms
of accuracy; these results will be reported elsewhere
[Sve03b]. Similar conclusions can be drawn from the
benchmarking experiments of Meyer et al. [Mey03].
(Notably, they also examined another well-known
tree ensemble method, MART, a type of boosting
[Fri01].) The bottom line is that over a range of di-
verse data sets, Random Forest has a performance
as good as or nearly as good as the best-performing
algorithms.

4. Parameter tuning and variable se-
lection

Random Forest has a parameter, mtry, that in prin-
ciple could be considered a tuning parameter. Also,

the removal of irrelevant variables may affect the
performance of Random Forest. However, we argue
that neither of these issues seems to be as critical
to performance as they would be in most other ma-
chine learning methods. The argument is clearest
with regard to variable reduction. Trees are gener-
ally resistant to the presence of irrelevant variables,
since embedded variable selection is intrinsic to the
tree growing process [Guy03]. Ensembles of trees
should be even more capable of resisting the influ-
ence of irrelevant variables. Therefore, we do not
expect Random Forest to gain much in accuracy per-
formance if variable reduction is implemented. As an
illustration, again consider the p-glycoprotein trans-
port data. We implemented the following variable
reduction algorithm:

1. Partition the data for 5-fold cross-validation.

2. On each CV training set, train a model on all
variables and use the variable importance mea-
sure to rank them. Record the CV test set pre-
dictions.

3. Use the variable ranking to remove the least
important half of the variables and retrain the
model, predicting the CV test set. Repeat re-
moval of half of the variables until there are 2
left.

4. Aggregate results from all 5 CV partitions and
compute the error rate (or MSE) at each step
of halving.

5. Replicate steps (1)-(4) 50 times to “smooth out”
the variability.

The median error rates for the 50 replications,
with medians connected by line segments, is shown
in Fig. 1, for various choices of mtry. The cases of
mtry equaling p (equivalent to bagging), p/2, p/4,
and the default

√
p are considered.

The plot shows that the default mtry performs
the best, but the other choices are only a few per-
cent worse, still competitive with PLS. Also, the
performance remains about the same as irrelevant
variables are removed, until you reach 191 variables.
Further removal of variables will degrade the predic-
tion performance.

Although the robustness of Random Forest’s per-
formance to the presence of irrelevant variables is
to be expected, its robustness to changes in mtry is
a pleasant surprise; users should always investigate
this to make sure it will be the case for their data.
A more in-depth discussion of these issues can be
found in [Sve03a].
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Figure 1: Median CV test error rates at each step of halving the important variables, using different mtry
functions, for the P-gp data. Line segments connect the medians of 20 5-fold CV error rates.

5. Random Forest software

Open source software for Random Forest is
publicly available. The Fortran code for
the Random Forest software, written by Leo
Breiman and Adele Cutler, is available at
http://www.stat.berkeley.edu/users/breiman/
rf.html and an R interface for it by Andy
Liaw and Matt Wiener [Lia02] can be found at
http://cran.us.r-project.org/ by looking for
the randomForest package. A Matlab interface
by Ting Wang is currently under development at
Merck; please contact us for further information on
it.

6. Conclusion

As discussed in the Introduction, the Decision Tree
has the “right” combination of features to make it
appealing for QSAR modeling, but it suffers from
low predictive accuracy. In this talk, we demon-
strate on the P-gp data set that Random Forest
outperforms a single tree and can perform as well
as other methods like PLS. Random Forest performs
well “off the shelf”, apparently not requiring much
parameter tuning or variable selection (although in
serious research, both issues should always be inves-
tigated). Open source software is freely available, so
we look forward to hearing from other researchers
about their successes (or otherwise) with using Ran-
dom Forest for challenging classification and regres-
sion problems.
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